MATLAB中ode45()和Runge-Kutta算法(4阶)的比较

引言

写这篇博客目的是自己在求解微分方程的时候,考虑到 ode45() 可能求解速度比较慢,想用一种快速一点的微分方程求解算法,又想到 ode45() 用的就是 Runge-Kutta (RK)算法,所以想是不是自己可以自己编写一个 RK 算法用来代替 ode45()。因为 MATLAB 的 ode45() 算法中可能存在较多的判断条件,这也许是让 ode45() 速度较慢的一个原因,而自己编写的 RK 算法省略了很多不必要的判断,也许会快一些。

ode45()

ode45() 算法是 MATLAB 中专门用于求解常微分方程(Ordinary differential equations,ODE)的函数,它在求解微分方程时的步长是变步长的,使用也是 RK 算法。

45 代表了 ode45() 使用 4 阶- 5阶 RK 算法。其中,4 阶方法用于提供 ODE 的候选解,5 阶方法用于控制误差,整体截断误差为 $\Delta x^5$。

Runge-Kutta 算法

RK 算法是德国数学家 Runge 和 Kutta 在 1900 年前后提出的一种高精度求解微分方程的数值算法。该算法间接使用 Taylor 级数展开构造高精度数值方法,利用函数 $f$ 在若干点的值的线性组合代替 $f$ 的导数,再利用 Taylor 级数展开方法确定其中系数。

下面详细说明 RK 算法如何求解一阶微分方程。

对于如下问题:

\[\left \{\begin{matrix} \begin{aligned} &\boldsymbol{\dot{y}} = f(t,\boldsymbol{y}),\\ &\boldsymbol{y}(t_0) = \boldsymbol{y}_0, \end{aligned} \end{matrix} \right.\]

式中,$t_0$ 为初始时间,$\boldsymbol{y}_0$ 为初始状态,$f(t,\boldsymbol{y})$ 为关于时间 $t$ 和状态 $\boldsymbol{t}$ 的函数。

那么 4 阶 RK 算法为:

\[\left \{\begin{matrix} \begin{aligned} &k_1 = f(t(k) ,\boldsymbol{y}(k)), \\ &k_2 = f(t(k) + h/2,\boldsymbol{y}(k) + k_1 h/2), \\ &k_3 = f(t(k) + h/2,\boldsymbol{y}(k) + k_2 h/2), \\ &k_4 = f(t(k) + h ,\boldsymbol{y}(k) + k_3 h), \\ &\boldsymbol{y}(k+1) = \boldsymbol{y}(k) + h(k_1+2k_2+2k_3+k_4)/6, \\ &\boldsymbol{y}(0) = \boldsymbol{y}_0. \end{aligned} \end{matrix} \right.\]

上式即为 $\boldsymbol{y}(k)$ 向 $\boldsymbol{y}(k+1)$ 递推的形式,根据初始条件可以求出 $\boldsymbol{y}(1)$,$\boldsymbol{y}(2)$,$\boldsymbol{y}(3)$,$\boldsymbol{y}(4)$,$\cdots$ $\boldsymbol{y}(N)$,该离散序列即为微分方程的数值解。

RK 算法程序

在这里给出 RK 算法的 MATLAB 程序。

%--- RK 算法 ---%
% ufunc - 微分方程组的函数名
% y0 - 初始值
% h - 步长
% a - 初始时间
% b - 末端时间
function [x,y]=runge_kutta1(ufunc,y0,h,a,b)
% 步数
n = floor((b-a)/h);
% 时间起点
x(1) = a;
% 初始值
y(:,1)=y0;

% 算法开始
for iter=1:n
% 时间变量
x(iter+1) = x(iter)+h;
% 开始迭代
k1 = ufunc(x(iter),       y(:,iter));
k2 = ufunc(x(iter) + h/2, y(:,iter) + h*k1 / 2);
k3 = ufunc(x(iter) + h/2, y(:,iter) + h*k2 / 2);
k4 = ufunc(x(iter) + h,   y(:,iter) + h*k3 );
% 得到结果
y(:,iter+1) = y(:,iter) + h * (k1 + 2*k2 + 2*k3 + k4) / 6;
end

end

仿真

用一个一阶微分方程数值求解例子来对比 ode45() 和 自编 RK 算法的效果。

对于问题

\[\left \{\begin{matrix} \begin{aligned} \dot{y}_1 &= y_2 y_3, \\ \dot{y}_2 &= -y_1 + y_3, \\ \dot{y}_3 &= -0.51 y_1 y_2, \\ \boldsymbol{y} &= (y_{10},y_{20},y_{30}) = (1,1,3). \end{aligned} \end{matrix} \right.\]

在时间区间 $[0,t_f]$ 上的解,其中 $t_f$ 未定。

仿真代码

给出 MATLAB 解决上述问题的仿真代码。

clc;clear;close all;

%% 主函数
% 时间变量
t0 = 0;
tf = 1000;
% 初值
y10 = 1;
y20 = 1;
y30 = 3;
y = [y10,y20,y30];
% RK 算法步长
h = 0.25;
% 对该微分方程组用ode45和自编的龙格库塔函数进行比s较调用如下
% ode45()函数
tic;
[T,F] = ode45(@fun,[t0 tf],y);
time_record_ode = toc;
toc;

% 自编RK函数
tic;
[T1,F1]=runge_kutta1(@fun,y,h,t0,tf);
time_record_rk = toc;
toc;

%% 画图
figure('color',[1 1 1],'position',[600,100,500*1.5,416*1.5]);
subplot(121);
plot(T,F,'LineWidth',1.5);
title(['ode45','($t_f$=',num2str(tf),')'],'Interpreter','Latex');
set(gca,'FontSize',15,'FontName','Times New Roman','LineWidth',1.5);

subplot(122);
plot(T1,F1,'LineWidth',1.5);
title(['RK4','($t_f$=',num2str(tf),'),($h$=',num2str(h),')'],'Interpreter','Latex');
set(gca,'FontSize',15,'FontName','Times New Roman','LineWidth',1.5);

% 保存数据
str = ['tf_',num2str(tf),'_h_',num2str(h),'.mat'];
str_fig = ['tf_',num2str(tf),'_h_',num2str(h),'.jpg'];
save(str);
saveas(gcf,str_fig)
%% 子函数部分
% 微分方程
function dy = fun(t,y)
dy = zeros(3,1);%初始化列向量
dy(1) = y(2) * y(3);
dy(2) = -y(1) + y(3);
dy(3) = -0.51 * y(1) * y(2);
end

%--- RK 算法 ---%
% ufunc - 微分方程组的函数名
% y0 - 初始值
% h - 步长
% a - 初始时间
% b - 末端时间
function [x,y]=runge_kutta1(ufunc,y0,h,a,b)
% 步数
n = floor((b-a)/h);
% 时间起点
x = zeros(n,1);
x(1) = a;
% 初始值
y(:,1)=y0;

% 算法开始
for iter=1:n
% 时间变量
x(iter+1) = x(iter)+h;
% 开始迭代
k1 = ufunc(x(iter),       y(:,iter));
k2 = ufunc(x(iter) + h/2, y(:,iter) + h*k1 / 2);
k3 = ufunc(x(iter) + h/2, y(:,iter) + h*k2 / 2);
k4 = ufunc(x(iter) + h,   y(:,iter) + h*k3 );
% 得到结果
y(:,iter+1) = y(:,iter) + h * (k1 + 2*k2 + 2*k3 + k4) / 6;
end

end

算法主要对比的有 2 项指标,计算精度计算效率

不同终端时间下的算法对比

分别对比 $t_f=15,10^2,10^3,10^4,10^5$ 时,ode45() 和 RK 算法的计算精度计算效率

tf_15_h_0.25

tf_100_h_0.25

tf_1000_h_0.25

tf_10000_h_0.25

tf_100000_h_0.25

从计算精度来看,计算时间比较小的时候, RK 算法和 ode45() 的区别不是很大,但是计算时间增大之后,到了 $t_f=10^3,10^4,10^5$ 的时候,RK 算法的精度就逐渐跟不上 ode45() ,此时 RK 算法累积的误差更大一些了。

  $t_f=15$ $t_f=10^2$ $t_f=10^3$ $t_f=10^4$ $t_f=10^5$
ode45() 0.000863 0.002703 0.020696 0.165518 1.204862
RK4() 0.000448 0.001650 0.015817 0.136802 1.336549

从计算效率来看,RK 算法的计算效率要优于 ode45() ,不过计算时间增大到 $t_f=10^5$ 的时候,ode45() 的计算效率超过了 RK 算法,猜想是计算时间太长,自编的 RK 算法无法针对这么长计算时间的微分方程做特定优化,所以导致计算时间慢于 ode45()

不同步长下的算法对比

分别对比 $t_f=15$ 和 $t_f=10^3$ ,Rk 算法步长为 $h=0.01,0.10,0.20,0.25,0.35,0.50$ 时,ode45() 和 RK 算法的计算精度计算效率

tf_15_h_0.01

tf_15_h_0.1

tf_15_h_0.2

tf_15_h_0.25

tf_15_h_0.35

tf_15_h_0.5

tf_1000_h_0.01

tf_1000_h_0.1

tf_1000_h_0.2

tf_1000_h_0.25

tf_1000_h_0.35

tf_1000_h_0.5

从计算精度来看,计算时间比较小的时候, RK 算法的步长越小,算的结果越和 ode45() 的结果接近,步长增加到 $h=0.35,0.5$ 的时候,得到的曲线已经呈现不光滑的趋势了。

计算时间增大之后,,RK 算法精度跟不上 ode45() ,这个时候的步长选取就值得考虑了,可以发现,不论是步长取得过小($h=0.01,0.10,0.20$),还是步长取得过大($h=0.35,0.50$),得到的结果都和 ode45() 的结果不相符合,在 $h=0.25$ 时,Rk 算法求解微分方程的效果会好一些,和 ode45() 的结果有差距,但相较其他步长的结果来说,要更好一些。

$t_f=15$ $h=0.01$ $h=0.10$ $h=0.20$ $h=0.25$ $h=0.35$ $h=0.50$
ode45() 0.000795 0.000781 0.000881 0.000863 0.000992 0.000870
RK4() 0.005705 0.000901 0.000493 0.000448 0.000380 0.000251
$t_f=10^3$ $h=0.01$ $h=0.10$ $h=0.20$ $h=0.25$ $h=0.35$ $h=0.50$
ode45() 0.021820 0.020883 0.020322 0.020696 0.020698 0.020758
RK4() 0.343084 0.035581 0.017536 0.015817 0.011288 0.007863

从计算效率来看,RK 算法的步长越小,计算效率越低,因为步长小的话,每次更新迭代的值也小了,需要更多步才能迭代到理想值;步长大的时候,计算效率较高,但是计算精度较低。

结论

因此,可以得出结论,

  • 在计算时间短的微分方程求解问题中,使用自编 RK 算法的计算精度与使用 ode45() 计算精度相近,计算效率更高;
  • 在计算时间长的微分方程求解问题中,建议使用 ode45() 会得到更好的结果;
  • RK 算法中,计算步长和计算时间区间是需要协调好的重要变量,把这 2 个变量设置好,计算精度和计算效率才会更加优越。